Открытые системы. Самоорганизация: синергетический подход Реинкарнация обратной связи

Модель OSI, как это следует из ее названия (Open System Interconnection), описы­вает взаимосвязи открытых систем. Что же такое открытая система?

В широком смысле открытой системой может быть названа любая система (компьютер, вычислительная сеть, ОС, программный пакет, другие аппаратные и программные продукты), которая построена в соответствии с открытыми специ­фикациями.

Напомним, что под термином «спецификация» (в вычислительной технике) понимают формализованное описание аппаратных или программных компонентов, способов их функционирования, взаимодействия с другими компонентами, условий эксплуатации, ограничений и особых характеристик. Понятно, что не всякая специ­фикация является стандартом. В свою очередь, под открытыми спецификациями понимаются опубликованные, общедоступные спецификации, соответствующие стан­дартам и принятые в результате достижения согласия после всестороннего обсужде­ния всеми заинтересованными сторонами.

Использование при разработке систем открытых спецификаций позволяет третьим сторонам разрабатывать для этих систем различные аппаратные или про­граммные средства расширения и модификации, а также создавать программно-аппаратные комплексы из продуктов разных производителей.

Для реальных систем полная открытость является недостижимым идеалом. Как правило, даже в системах, называемых открытыми, этому определению соответствуют лишь некоторые части, поддерживающие внешние интерфейсы. На­пример, открытость семейства операционных систем Unix заключается, кроме всего прочего, в наличии стандартизованного программного интерфейса между ядром и приложениями, что позволяет легко переносить приложения из среды одной версии Unix в среду другой версии. Еще одним примером частичной открытости является применение в достаточно закрытой операционной системе Novell NetWare открытого интерфейса Open Driver Interface (ODI) для включе­ния в систему драйверов сетевых адаптеров независимых производителей. Чем больше открытых спецификаций использовано при разработке системы, тем бо­лее открытой она является.

Модель OSI касается только одного аспекта открытости, а именно открытости средств взаимодействия устройств, связанных в вычислительную сеть. Здесь под открытой системой понимается сетевое устройство, готовое взаимодействовать с другими сетевыми устройствами с использованием стандартных правил, опреде­ляющих формат, содержание и значение принимаемых и отправляемых сообще­ний.

Если две сети построены с соблюдением принципов открытости, то это дает следующие преимущества:

Возможность построения сети из аппаратных и программных средств различ­ных производителей, придерживающихся одного и того же стандарта;

Возможность безболезненной замены отдельных компонентов сети другими, более совершенными, что позволяет сети развиваться с минимальными затратами;

Возможность легкого сопряжения одной сети с другой;

Простота освоения и обслуживания сети.

Ярким примером открытой системы является международная сеть Internet. Эта сеть развивалась в полном соответствии с требованиями, предъявляемыми к от­крытым системам. В разработке ее стандартов принимали участие тысячи специа­листов-пользователей этой сети из различных университетов, научных организаций и фирм-производителей вычислительной аппаратуры и программного обеспече­ния, работающих в разных странах. Само название стандартов, определяющих ра­боту сети Internet - Request For Comments (RFC), что можно перевести как «запрос на комментарии», - показывает гласный и открытый характер принимаемых стан­дартов. В результате сеть Internet сумела объединить в себе самое разнообразное оборудование и программное обеспечение огромного числа сетей, разбросанных по всему миру.

1.3.5. Модульность и стандартизация

Модульность - это одно из неотъемлемых и естественных свойств вычислительных сетей. Модульность проявляется не только в многоуровневом представлении комму­никационных протоколов в конечных узлах сети, хотя это, безусловно, важная и принципиальная особенность сетевой архитектуры. Сеть состоит из огромного чис­ла различных модулей - компьютеров, сетевых адаптеров, мостов, маршрутизаторов, модемов, операционных систем и модулей приложений. Разнообразные требования, предъявляемые предприятиями к компьютерным сетям, привели к такому же разно­образию выпускаемых для построения сети устройств и программ. Эти продукты

отличаются не только основными функциями (имеются в виду функции, выполня­емые, например, повторителями, мостами или программными редиректорами), но и многочисленными вспомогательными функциями, предоставляющими пользовате­лям или администраторам дополнительные удобства, такие как автоматизированное конфигурирование параметров устройства, автоматическое обнаружение и устране­ние некоторых неисправностей, возможность программного изменения связей в сети и т. п. Разнообразие увеличивается также потому, что многие устройства и програм­мы отличаются сочетаниями тех или иных основных и дополнительных функций - существуют, например, устройства, сочетающие основные возможности коммутато­ров и маршрутизаторов, к которым добавляется еще и набор некоторых дополни­тельных функций, характерный только для данного продукта.

В результате не существует компании, которая смогла бы обеспечить производ­ство полного набора всех типов и подтипов оборудования и программного обеспе­чения, требуемого для построения сети. Но, так как все компоненты сети должны работать согласованно, совершенно необходимым оказалось принятие многочис­ленных стандартов, которые, если не во всех, то хотя бы в большинстве случаев, гарантировали бы совместимость оборудования и программ различных фирм-из­готовителей. Таким образом, понятия модульности и стандартизации в сетях не­разрывно связаны, и модульный подход только тогда дает преимущества, когда он сопровождается следованием стандартам.

В результате открытый характер стандартов и спецификаций важен не только для коммуникационных протоколов, но и для всех многочисленных функций разно­образных устройств и программ, выпускаемых для построения сети. Нужно отметить, что большинство стандартов, принимаемых сегодня, носят открытый характер. Вре­мя закрытых систем, точные.спецификации на которые были известны только фир­ме-производителю, ушло. Все осознали, что возможность легкого взаимодействия с продуктами конкурентов не снижает, а наоборот, повышает ценность изделия, так как его можно применить в большем количестве работающих сетей, построенных на продуктах разных производителей. Поэтому даже фирмы, ранее выпускавшие весь­ма закрытые системы - такие как IBM, Novell или Microsoft, - сегодня активно участвуют в разработке открытых стандартов и применяют их в своих продуктах.

Сегодня в секторе сетевого оборудования и программ с совместимостью продук­тов разных производителей сложилась следующая ситуация. Практически все про­дукты, как программные, так и аппаратные, совместимы по функциям и свойствам, которые были внедрены в практику уже достаточно давно и стандарты на которые уже разработаны и приняты по крайней мере 3-4 года назад. В то же время очень часто принципиально новые устройства, протоколы и свойства оказываются несов­местимыми даже у ведущих производителей. Такая ситуация наблюдается не только для тех устройств или функций, стандарты на которые еще не успели принять (это естественно), но и для устройств, стандарты на которые существуют уже несколько лет. Совместимость достигается только после того, как все производители реализуют этот стандарт в своих изделиях, причем одинаковым образом.

1.3.6. Источники стандартов

Работы по стандартизации вычислительных сетей ведутся большим количеством организаций. В зависимости от статуса организаций различают следующие виды Стандартов:

стандарты отдельных фирм (например, стек протоколов DECnet фирмы Digital Equipment или графический интерфейс OPEN LOOK для Unix-систем фирмы Sun);

стандарты специальных комитетов и объединений, создаваемых несколькими фирмами, например стандарты технологии АТМ, разрабатываемые специально созданным объединением АТМ Forum, насчитывающем около 100 коллектив­ных участников, или стандарты союза Fast Ethernet Alliance по разработке стан­дартов 100 Мбит Ethernet;

национальные стандарты, например, стандарт FDDI, представляющий один из многочисленных стандартов, разработанных Американским национальным ин­ститутом стандартов (ANSI), или стандарты безопасности для операционных систем, разработанные Национальным центром компьютерной безопасности (NCSC) Министерства обороны США;

международные стандарты, например, модель и стек коммуникационных про­токолов Международной организации по стандартам (ISO), многочисленные

стандарты Международного союза электросвязи (ITU), в том числе стандарты

на сети с коммутацией пакетов Х.25, сети frame relay, ISDN, модемы и многие

Некоторые стандарты, непрерывно развиваясь, могут переходить из одной ка­тегории в другую. В частности, фирменные стандарты на продукцию, получившую широкое распространение, обычно становятся международными стандартами де-факто, так как вынуждают производителей из разных стран следовать фирменным стандартам, чтобы обеспечить совместимость своих изделий с этими популярными продуктами. Например, из-за феноменального успеха персонального компьютера компании IBM фирменный стандарт на архитектуру IBM PC стал международ­ным стандартом де-факто.

Более того, ввиду широкого распространения некоторые фирменные стандарты становятся основой для национальных и международных стандартов де-юре. Например, стандарт Ethernet, первоначально разработанный компаниями Digital Equipment, Intel и Xerox, через некоторое время и в несколько измененном виде был принят как национальный стандарт IEEE 802.3, а затем организация ISO утвердила его в качестве международного стандарта ISO 8802.3.

Международная организация по стандартизации (International Organization / or Standardization , ISO , часто называемая также International Standards Organization ) представляет собой ассоциацию ведущих национальных организаций по стан­дартизации разных стран. Главным достижением ISO явилась модель взаимо­действия открытых систем OSI, которая в настоящее время является концеп­туальной основой стандартизации в области вычислительных сетей. В соответ­ствии с моделью OSI этой организацией был разработан стандартный стек ком­муникационных протоколов OSI.

Международный союз электросвязи (International Telecommunications Union , ITU ) - организация, являющаяся в настоящее время специализированным органом Организации Объединенных Наций. Наиболее значительную роль в стандарти­зации вычислительных сетей играет постоянно действующий в рамках этой организации Международный консультативный комитет по телефонии и теле­графии (МККТТ) (Consultative Committee on International Telegraphy and Telephony, CCITT). В результате проведенной в 1993 году реорганизации ITU CCITT несколько изменил направление своей деятельности и сменил назва­ние - теперь он называется сектором телекоммуникационной стандартизации ITU (ITU Telecommunication Standardization Sector, ITU-T). Основу деятельно­сти ITU-T составляет разработка международных стандартов в области телефо­нии, телематических служб (электронной почты, факсимильной связи, телетекста, телекса и т. д.), передачи данных, аудио- и видеосигналов. За годы своей дея­тельности ITU-T выпустил огромное число рекомендаций-стандартов. Свою работу ITU-T строит на изучении опыта сторонних организаций, а также на результатах собственных исследований. Раз в четыре года издаются труды ITU-T в виде так называемой «Книги», которая на самом деле представляет собой целый набор обычных книг, сгруппированных в выпуски, которые, в свою очередь, объединяются в тома. Каждый том и выпуск содержат логически взаимосвязан­ные рекомендации. Например, том III Синей Книги содержит рекомендации для цифровых сетей с интеграцией услуг (ISDN), а весь том VIII (за исключе­нием выпуска VIII.1, который содержит рекомендации серии V для передачи данных по телефонной сети) посвящен рекомендациям серии X: Х.25 для сетей с коммутацией пакетов, Х.400 для систем электронной почты, Х.500 для гло­бальной справочной службы и многим другим.

Институт инженеров по электротехнике и радиоэлектронике - Institute of Electrical and Electronics Engineers , IEEE ) - национальная организация США, определяющая сетевые стандарты. В 1981 году рабочая группа 802 этого инсти­тута сформулировала основные требования, которым должны удовлетворять локальные вычислительные сети. Группа 802 определила множество стандар­тов, из них самыми известными являются стандарты 802.1,802.2, 802.3 и 802.5, которые описывают общие понятия, используемые в области локальных сетей, а также стандарты на два нижних уровня сетей Ethernet и Token Ring.

Европейская ассоциация производителей компьютеров (European Computer Manu ­ facturers Association , ЕСМА) - некоммерческая организация, активно сотрудни­чающая с ITU-T и ISO, занимается разработкой стандартов и технических обзоров, относящихся к компьютерной и коммуникационной технологиям. Из­вестна своим стандартом ЕСМА-101, используемым при передаче отформати­рованного текста и графических изображений с сохранением оригинального формата.

Ассоциация производителей компьютеров и оргтехники (Computer and Business Equipment Manufacturers Association , CBEMA ) - организация американских фирм-производителей аппаратного обеспечения; аналогична европейской ассоциации ЕКМА; участвует в разработке стандартов на обработку информации и соответ­ствующее оборудование.

Ассоциация электронной промышленности (Electronic Industries Association , EIA ) - промышленно-торговая группа производителей электронного и сетевого обору­дования; является национальной коммерческой ассоциацией США; проявляет значительную активность в разработке стандартов для проводов, коннекторов и других сетевых компонентов. Ее наиболее известный стандарт - RS-232C.

Министерство обороны США (Department of Defense , DoD ) имеет многочислен­ные подразделения, занимающиеся созданием стандартов для компьютерных систем. Одной из самых известных разработок DoD является стек транспорт­ных протоколов TCP/IP.

Американский национальный институт стандартов (American National Standards Institute , ANSI ) - эта организация представляет США в Международной орга­низации по стандартизации ISO. Комитеты ANSI ведут работу по разработке стандартов в различных областях вычислительной техники. Так, комитет ANSI ХЗТ9.5 совместно с фирмой IBM занимается стандартизацией локальных сетей крупных ЭВМ (архитектура сетей SNA). Известный стандарт FDDI также яв­ляется результатом деятельности этого комитета ANSI. В области микрокомпь­ютеров ANSI разрабатывает стандарты на языки программирования, интерфейс SCSI. ANSI разработал рекомендации по переносимости для языков С, FORTRAN, COBOL.

Особую роль в выработке международных открытых стандартов играют стан­дарты Internet. Ввиду большой и постоянной растущей популярности Internet, эти стандарты становятся международными стандартами «де-факто», многие из кото­рых затем приобретают статус официальных международных стандартов за счет их утверждения одной из вышеперечисленных организаций, в том числе ISO и ITU-T. Существует несколько организационных подразделений, отвечающих за развитие Internet и, в частности, за стандартизацию средств Internet.

Основным из них является Internet Society (ISOC) - профессиональное сооб­щество, которое занимается общими вопросами эволюции и роста Internet как гло­бальной коммуникационной инфраструктуры. Под управлением ISOC работает Internet Architecture Board (IAB) - организация, в ведении которой находится технический контроль и координация работ для Internet. IAB координирует на­правление исследований и новых разработок для стека TCP/IP и является конеч­ной инстанцией при определении новых стандартов Internet.

В IAB входят две основные группы: Internet Engineering Task Force (IETF) и Internet Research Task Force (IRTF). IETF - это инженерная группа, которая занимается ре­шением ближайших технических проблем Internet. Именно IETF определяет спе­цификации, которые затем становятся стандартами Internet. В свою очередь, IRTF координирует долгосрочные исследовательские проекты по протоколам TCP/IP.

В любой организации, занимающейся стандартизацией, процесс выработки и принятия стандарта состоит из ряда обязательных этапов, которые, собственно, и составляют процедуру стандартизации. Рассмотрим эту процедуру на примере раз­работки стандартов Internet.

Сначала в IETF представляется так называемый рабочий проект (draft ) в виде, доступном для комментариев. Он публикуется в Internet, после чего широкий круг заинтересованных лиц включается в обсуждение этого документа, в него вносятся исправления, и наконец наступает момент, когда можно зафиксиро­вать содержание документа. На этом этапе проекту присваивается номер RFC (возможен «. другой вариант развития событий - после обсуждения рабочий проект отвергается и удаляется из Internet).

После присвоения номера проект приобретает статус предлагаемого стандарта. В течение 6 месяцев этот предлагаемый стандарт проходит проверку практи­кой, в результате в него вносятся изменения.

Если результаты практических исследований показывают эффективность пред­лагаемого стандарта, то ему, со всеми внесенными изменениями, присваивается статус проекта стандарта. Затем в течение не менее 4-х месяцев проходят его, дальнейшие испытания «на прочность», в число которых входит создание по крайней мере двух программных реализации.

Если во время пребывания в ранге проекта стандарта в документ не было вне­сено никаких исправлений, то ему может быть присвоен статус официального стандарта Internet. Список утвержденных официальных стандартов Internet публикуется в виде документа RFC и доступен в Internet. Следует заметить, что все стандарты Internet носят название RFC с соответ­ствующим порядковым номером, но далеко не все RFC являются стандартами Internet - часто эти документы представляют собой комментарии к какому-либо стандарту или просто описания некоторой проблемы Internet.

1.3.7. Стандартные стеки коммуникационных протоколов

Важнейшим направлением стандартизации в области вычислительных сетей явля­ется стандартизация коммуникационных протоколов. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наибо­лее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA и OSLBce эти стеки, кроме SNA на нижних уровнях - физическом и канальном, - используют одни и те же хорошо стандартизованные протоколы Ethernet, Token;

Ring, FDDI и некоторые другие, которые позволяют использовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим! собственным протоколам. Эти протоколы часто не соответствуют рекомендуемому! моделью OSI разбиению на уровни. В частности, функции сеансового и представи-" тельного уровня, как правило, объединены с прикладным уровнем. Такое несоот-| ветствие связано с тем, что модель OSI появилась как результат обобщения ужи существующих и реально используемых стеков, а не наоборот.

Следует четко различать модель OSI и стек OSI. В то время как модель OSI явля-| ется концептуальной схемой взаимодействия открытых систем, стек OSI представ| ляет собой набор вполне конкретных спецификаций протоколов. В отличие от други[ стеков протоколов стек OSI полностью соответствует модели OSI, он включает спецификации протоколов для всех семи уровней взаимодействия, определенных этой модели. На нижних уровнях стек OSI поддерживает Ethernet, Token Ring FDDI, протоколы глобальных сетей, Х.25 и ISDN, - то есть использует разработанные вне стека протоколы нижних уровней, как и все другие стеки. Протокола сетевого, транспортного и сеансового уровней стека OSI специфицированы и реализованы различными производителями, но распространены пока мало. Наиболее популярными протоколами стека OSI являются прикладные протоколы. К ним относятся: протокол передачи файлов FTAM, протокол эмуляции терминала VTPJ протоколы справочной службы Х.500, электронной почты Х.400 и ряд других. :

Протоколы стека OSI отличает большая сложность и неоднозначность спецификаций. Эти свойства явились результатом общей политики разработчиков стека, стремившихся учесть в своих протоколах все случаи жизни и все существующие и появляющиеся технологии. К этому нужно еще добавить и последствия большого количества политических компромиссов, неизбежных при принятии международ­ных стандартов по такому злободневному вопросу, как построение открытых вы­числительных сетей.

Из-за своей сложности протоколы OSI требуют больших затрат вычислитель­ной мощности центрального процессора, что делает их наиболее подходящими для мощных машин, а не для сетей персональных компьютеров.

Стек OSI - международный, независимый от производителей стандарт. Его поддерживает правительство США в своей программе GOSIP, в соответствии с которой все компьютерные сети, устанавливаемые в правительственных учрежде­ниях США после 1990 года, должны или непосредственно поддерживать стек OSI, или обеспечивать средства для перехода на этот стек в будущем. Тем не менее стек OSI более популярен в Европе, чем в США, так как в Европе осталось меньше старых сетей, работающих по своим собственным протоколам. Большинство орга­низаций пока только планируют переход к стеку OSI, и очень немногие приступи­ли к созданию пилотных проектов. Из тех, кто работает в этом направлении, можно назвать Военно-морское ведомство США и сеть NFSNET. Одним из крупнейших производителей, поддерживающих OSI, является компания AT&T, ее сеть Stargroup полностью базируется на этом стеке.

Стек TCP/IP был разработан по инициативе Министерства обороны США более 20 лет назад для связи экспериментальной сети ARPAnet с другими сетями как набор общих протоколов для разнородной вычислительной среды. Большой вклад в развитие стека TCP/IP, который получил свое название по популярным протоко­лам IP и TCP, внес университет Беркли, реализовав протоколы стека в своей вер­сии ОС UNIX. Популярность этой операционной системы привела к широкому распространению протоколов TCP, IP и других протоколов стека. Сегодня этот стек используется для связи компьютеров всемирной информационной сети Internet, а также в огромном числе корпоративных сетей.

Стек TCP/IP на нижнем уровне поддерживает все популярные стандарты фи­зического и канального уровней: для локальных сетей - это Ethernet, Token Ring, FDDI, для глобальных - протоколы работы на аналоговых коммутируемых и вы­деленных линиях SLIP, РРР, протоколы территориальных сетей Х.25 и ISDN.

Основными протоколами стека, давшими ему название, являются протоколы IP и TCP. Эти протоколы в терминологии модели OSI относятся к сетевому и транспортному уровням соответственно. IP обеспечивает продвижение пакета по составной сети, a TCP гарантирует надежность его доставки.

За долгие годы использования в сетях различных стран и организаций стек TCP/IP вобрал в себя большое количество протоколов прикладного уровня. К ним относятся такие популярные протоколы, как протокол пересылки файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы службы WWW и многие Другие.

Сегодня стек TCP/IP представляет собой один из самых распространенных стеков транспортных протоколов вычислительных сетей. Действительно, только в сети Internet объединено около 10 миллионов компьютеров по всему миру, кото­рые взаимодействуют друг с другом с помощью стека протоколов TCP/IP.

Стремительный рост популярности Internet привел и к изменениям в расста­новке сил в мире коммуникационных протоколов - протоколы TCP/IP, на кото­рых построен Internet, стали быстро теснить бесспорного лидера прошлых лет - стек IPX/SPX компании Novell. Сегодня в мире общее количество компьютеров, на которых установлен стек TCP/IP, сравнялось с общим количеством компьюте­ров, на которых работает стек IPX/SPX, и это говорит о резком переломе в от­ношении администраторов локальных сетей к протоколам, используемым на настольных компьютерах, так как именно они составляют подавляющее число мирового компьютерного парка и именно на них раньше почти везде работали прото­колы компании Novell, необходимые для доступа к файловым серверам NetWare. Процесс становления стека TCP/IP в качестве стека номер один в любых типах сетей продолжается, и сейчас любая промышленная операционная система обя-1 зательно включает программную реализацию этого стека в своем комплекте поставки.

Хотя протоколы TCP/IP неразрывно связаны с Internet и каждый из много­миллионной армады компьютеров Internet работает на основе этого стека, суще­ствует большое количество локальных, корпоративных и территориальных сетей, непосредственно не являющихся частями Internet, в которых также используют

протоколы TCP/IP. Чтобы отличать их от Internet, эти сети называют сетями TCP/IP, или просто IP-сетями.

Поскольку стек TCP/IP изначально создавался для глобальной сети Internet он имеет много особенностей, дающих ему преимущество перед другими протоко лами, когда речь заходит о построении сетей, включающих глобальные связи. В част ности, очень полезным свойством, делающим возможным применение этого протокола в больших сетях, является его способность фрагментировать пакеты. Действительно, большая составная сеть часто состоит из сетей, построенныхнасовершенно разных принципах. В каждой из этих сетей может быть установлю собственная величина максимальной длины единицы передаваемых данных (в ра). В таком случае при переходе из одной сети, имеющей большую максималы длину, в сеть с меньшей максимальной длиной может возникнуть необходимо деления передаваемого кадра на несколько частей. Протокол IP стека TCP/IP эффективно решает эту задачу.

Другой особенностью технологии TCP/IP является гибкая система адресации, позволяющая более просто по сравнению с другими протоколами аналогичного назначения включать в интерсеть сети других технологий. Это свойств также способствует применению стека TCP/IP для построения больших гетер» генных сетей.

В стеке TCP/IP очень экономно используются возможности широковещательных рассылок. Это свойство совершенно необходимо при работе на медленных каналах связи, характерных для территориальных сетей.

Однако, как и всегда, за получаемые преимущества надо платить, и платой здесй оказываются высокие требования к ресурсам и сложность администрирования IP-сетей. Мощные функциональные возможности протоколов стека TCP/IP требуют для своей реализации высоких вычислительных затрат. Гибкая система адресации! и отказ от широковещательных рассылок приводят к наличию в IP-сети различных централизованных служб типа DNS, DHCP и т. п. Каждая из этих служб на­правлена на облегчение администрирования сети, в том числе и на облегчение кон­фигурирования оборудования, но в то же время сама требует пристального внима­ния со стороны администраторов.

Можно приводить и другие доводы за и против стека протоколов Internet, од­нако факт остается фактом - сегодня это самый популярный стек протоколов, широко используемый как в глобальных, так и локальных сетях.

Стек IPX/SPX

Этот стек является оригинальным стеком протоколов фирмы Novell, разработан­ным для сетевой операционной системы NetWare еще в начале 80-х годов. Прото­колы сетевого и сеансового уровней Internetwork Packet Exchange (IPX) и Sequenced Packet Exchange (SPX), которые дали название стеку, являются прямой адаптаци­ей протоколов XNS фирмы Xerox, распространенных в гораздо меньшей степени, чем стек IPX/SPX. Популярность стека IPX/SPX непосредственно связана с опе­рационной системой Novell NetWare, которая еще сохраняет мировое лидерство по числу установленных систем, хотя в последнее время ее популярность несколько снизилась и по темпам роста она отстает от Microsoft Windows NT.

Многие особенности стека IPX/SPX обусловлены ориентацией ранних версий ОС NetWare (до версии 4.0) на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Понятно, что для таких компьютеров компании Novell нужны были протоколы, на реализацию которых требовалось бы минимальное количество оперативной памяти (ограни­ченной в IBM-совместимых компьютерах под управлением MS-DOS объемом 640 Кбайт) и которые бы быстро работали на процессорах небольшой вычисли­тельной мощности. В результате протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень - в больших корпоративных сетях, так как они слишком перегружали медленные глобальные связи широковещатель­ными пакетами, которые интенсивно используются несколькими протоколами этого стека (например, для установления связи между клиентами и серверами). Это об­стоятельство, а также тот факт, что стек IPX/SPX является собственностью фир­мы Novell и на его реализацию нужно получать лицензию (то есть открытые спецификации не поддерживались), долгое время ограничивали распространен­ность его только сетями NetWare. Однако с момента выпуска версии NetWare 4.0 Novell внесла и продолжает вносить в свои протоколы серьезные изменения, на­правленные на их адаптацию для работы в корпоративных сетях. Сейчас стек IPX/ SPX реализован не только в NetWare, но и в нескольких других популярных сете­вых ОС, например SCO UNIX, Sun Solaris, Microsoft Windows NT.

Стек NetBIOS/SMB

Этот стек широко используется в продуктах компаний IBM и Microsoft. На физи­ческом и канальном уровнях этого стека используются все наиболее распростра­ненные протоколы Ethernet, Token Ring, FDDI и другие. На верхних уровнях работают протоколы NetBEUI и SMB.

Протокол NetBIOS (Network Basic Input/Output System) появился в 1984 году как сетевое расширение стандартных функций базовой системы ввода/вывода (BIOS) IBM PC для сетевой программы PC Network фирмы IBM. В дальнейшем этот протокол был заменен так называемым протоколом расширенного пользова­тельского интерфейса NetBEUI - NetBIOS Extended User Interface. Для обеспече­ния совместимости приложений в качестве интерфейса к протоколу NetBEUI был сохранен интерфейс NetBIOS. Протокол NetBEUI разрабатывался как эффектив­ный протокол, потребляющий немного ресурсов и предназначенный для сетей, насчитывающих не более 200 рабочих станций. Этот протокол содержит много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням модели OSI, однако с его помощью невозможна маршрутиза­ция пакетов. Это ограничивает применение протокола NetBEUI локальными сетя­ми, не разделенными на подсети, и делает невозможным его использование в составных сетях. Некоторые ограничения NetBEUI снимаются реализацией этого протокола NBF (NetBEUI Frame), которая включена в операционную систему Microsoft Windows NT.

Протокол SMB (Server Message Block) выполняет функции сеансового, пред­ставительного и прикладного уровней. На основе SMB реализуется файловая служба, а также службы печати и передачи сообщений между приложениями.

Стеки протоколов SNA фирмы IBM, DECnet корпорации Digital Equipment и AppleTalk/AFP фирмы Apple применяются в основном в операционных системах и сетевом оборудовании этих фирм.

Рис. 1.30. Соответствие популярных стеков протоколов модели OSI

На рис. 1.30 показано соответствие некоторых, наиболее популярных протоколов уровням модели OSI. Часто это соответствие весьма условно, так как модель OSI - это только руководство к действию, причем достаточно общее, а конкретные протоколы разрабатывались для решения специфических задач, причем многие из них появились до разработки модели OSI. В большинстве случаев разработчики стеков отдавали предпочтение скорости работы сети в ущерб модульности - ни один стек, кроме стека OSI, не разбит на семь уровней. Чаще всего в стеке явно выделяются 3-4 уровня: уровень сетевых адаптеров, в котором реализуются протоколы физического и канального уровней, сетевой уровень, транспортный уровень и уровень служб, вбирающий в себя функции сеансового, представительного и прикладного уровней.

В компьютерных сетях идеологической основой стандартизации является мно­гоуровневый подход к разработке средств сетевого взаимодействия.

Формализованные правила, определяющие последовательность и формат сооб­щений, которыми обмениваются сетевые компоненты, лежащие на одном уров­не, но в разных узлах, называются протоколом.

Формализованные правила, определяющие взаимодействие сетевых компонен­тов соседних уровней одного узла, называются интерфейсом. Интерфейс опре­деляет набор сервисов, предоставляемый данным уровнем соседнему уровню.

Иерархически организованный набор протоколов, достаточный для организа­ции взаимодействия узлов в сети, называется стеком коммуникационных про­токолов.

Открытой системой может быть названа любая система, которая построена в соответствии с общедоступными спецификациями, соответствующими стандар­там и принятыми в результате публичного обсуждения всеми заинтересованны­ми сторонами.

Модель OSI стандартизует взаимодействие открытых систем. Она определяет 7 уровней взаимодействия: прикладной, представительный, сеансовый, транс­портный, сетевой, канальный и физический.

Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. Наиболее популяр­ными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA и OSI.

Существенное проникновение во внутреннее строение организации обеспечивается использованием системного подхода.

Различают системы открытые и закрытые. Понятие закрытой системы порождено физическим науками. Здесь понимается, что система является самосдерживаемой. Ее главная характеристика в том, что она существенно игнорирует эффект внешнего воздействия. Совершенной системой закрытого типа была бы та, которая не принимает энергии от внешних источников и не дает энергию своему внешнему окружению. Закрытая организационная система имеет малую применяемость.

Открытая система признает динамическое взаимодействие с окружающим миром. Организации получают свое сырье и человеческие ресурсы из окружающего мира. Они зависят от клиентов и заказчиков из внешнего мира, потребляющих их продукцию. Банки активно взаимодействующие с окружающим миром, используют депозиты, обращают их в кредиты и в инвестиции, используют полученную прибыль для подержания самих себя, для развития, для выплаты дивидендов и уплаты налогов.

На схеме предусматривающей промышленную организацию как открытую систему (рисунок 1), можно видеть поступление материалов, рабочей силы, капитала. Технологический процесс создается для переработки сырья в конечный продукт, который, в свою очередь, продается заказчику. Финансовые учреждения, рабочая сила, поставщики и заказчики, правительство – все являются частью окружения.

Степень разграничения открытой или закрытой систем меняется в рамках систем. Открытая система может стать более закрытой, если контакты с окружением уменьшаются со временем. В принципе возможна и обратная ситуация.

Рисунок 1 – Промышленная организация как открытая система

Открытее системы тяготеют к нарастанию усложненности и дифференциации. Иными словами, открытая система будет по мере своего роста стремится к большей специализации своих элементов и усложнению структуры, нередко расширяя свои границы или создавая новую суперсистему с более широкими границами. Если деловое предприятие растет, то наблюдается значительная его дифференциация и усложнение. Создаются новые специализированные отделы, приобретаются сырье и материалы, расширяется ассортимент выпускаемой продукции, организуются новые сбытовые конторы.

Все системы имеют вход, трансформационный процесс и выход. Они получают сырье, энергию, информацию, другие ресурсы и преобразуют их в товары и услуги, прибыль, отходы и т.п. Открытые системы имеют, однако, некоторые специфические черты, которые необходимо знать тем, кто изучает организации.

Одна из таких черт – это признание взаимозависимости между системой и внешним миром. Существует граница, отделяющая систему от ее окружения. Изменения в окружении влияют на один или несколько атрибутов системы, и наоборот, изменения в системе воздействуют на окружение. Внешняя среда организации схематично представлена на рисунке 2.

Рисунок 2 –Внешняя среда организации

Организация должна отражать внешнюю среду. В основе ее построения лежат предпосылки экономического, научно-технического, политического, социального или этического характера. Организация должна создаваться так, чтобы она нормально функционировала, получала вклад в общую работу со стороны всех ее членов и эффективно помогала работникам достигать поставленных целей и в настоящее время, и в будущем. В этом смысле действенная организация не может быть статичной. Она должна быстро узнавать обо всех изменениях среды, представлять их значение, выбирать наилучшею ответную реакцию, способствующую достижению ее целей, эффективно реагировать на воздействия среды.

Без границы не существует системы, и граница или границы определяют то, где начинаются и заканчиваются системы или подсистемы. Границы могут быть физическими, иметь психологическое содержание через такие символы, как названия, форма одежды, ритуалы. Концепция границ требуется для более углубленного понимания систем.

Принципиальное значение для функционирования организаций имеет обратная связь. Открытее системы постоянно получают информацию из своего окружения. Это помогает приспособиться и позволяет предпринимать корректировочные действия по исправлению отклонений от принятого курса. Здесь под обратной связью понимается процесс, позволяющий часть выходной продукции получить обратно в систему в виде информации или денег для модифицирования производства той же выпускаемой продукции или налаживания выпуска новой продукции.

Нужно учитывать и то, что организации укомплектовываются людьми. Очевидно, что при группировке видов деятельности и распределении полномочий внутри любой организационной системы необходимо учитывать различные недостатки и привычки людей. Это не означает, что организация должна создаваться применительно к людям, а не на основе целей и сопутствующих их достижению видов деятельности. Однако весьма важным, зачастую сдерживающим, для руководителя фактором является то, какие лица будут работать в организации.

Поведение членов организации может рассматриваться как ее внутренняя среда. В организации постоянно возникают проблемы, которые могут изменить ее положение, и чтобы все ее элементы действовали и были разумно скоординированы, необходимо непрерывное поступление ресурсов. Производственный аппарат изнашивается, технология устаревает, материалы нужно пополнять, работники увольняются. Чтобы обеспечить жизнеспособность организации, эти ресурсы необходимо, не прерывая производственного процесса, заменять элементами равной производительности.

Другие внутренние проблемы возникают из-за недостатков взаимодействия и скоординированности разных участков организации. Одной из причин того, что работники уходят, а акционеры не желают вкладывать свои сбережения, является неудовлетворительность этих групп условиями труда и вознаграждением за участие в организации, и это недовольство может стать сильным, что возникнет угроза самому существованию организации. Внутренняя среда организации схематически показана на рисунке 3.

Для организации характерен циклический характер функционирования. Выходная продукция системы обеспечивает средства для нового инвестирования, что позволяет повторять цикл. Доходы, полученные заказчиками промышленных организаций, должны быть достаточно адекватными для оплаты кредитов, труда рабочих и погашения займов, если цикличность устойчива и обеспечивает жизнеспособность организации.

Рисунок 3 – Внутренняя среда организации

Следует подчеркнуть и то, что организационные системы предрасположены к сокращению или распадению на части. Поскольку закрытая система не получает энергию и новые вложения из своего внешнего окружения, она может со временем сокращаться. В отличие от нее открытая система характеризуется негативной энтропией, т.е. она может реконструировать сама себя, подержать свою структуру, избежать ликвидации и даже вырасти, потому что имеет возможность получать энергию извне в большей мере, чем отдает наружу.

Приток энергии и для предотвращения энтропии поддерживает некоторое постоянство обмена энергией, в результате чего достигается относительно стабильное положение. Даже не смотря на то, что существует постоянный приток новых вложений в систему и постоянный отток, обеспечивается определенная сбалансированность системы. Когда открытая система активно перерабатывает вложения в выходную продукцию, она оказывается, тем не менее, способной поддерживать себя в течение определенного времени.

Исследования показывают, что большие и сложные организационные системы имеют тенденцию к дальнейшему росту и расширению. Они получают определенный запас прочности, выходящий за пределы обеспечения только выживаемости. Многие подсистемы в рамках системы имеют возможность получать энергии больше, чем требуется для производства своей продукции. Считается, что стабильное положение применимо к простым системам, но на более сложном уровне оно становится одним их факторов сохранения системы через рост и расширение.

По мере роста организации высшие ее руководители вынуждены все больше передавать свои обязанности по выработке решений вышестоящим звеньям. Однако поскольку руководители высшего уровня отвечают за все решения, их роль в организации изменяется: от выработки решений руководители высшего уровня переходят к управлению процессами выработки решения. В результате увеличение размеров организаций приводит к необходимости разделения труда в сфере управления. Одна группа – руководители высшего уровня – обладает первичными полномочиями и несет ответственность за определение характера системы управления организацией, т.е. процесса, с помощью которого должны разрешаться проблемы организации. Другая группа руководителей подчиняется руководству высшего уровня. Входящие в нее люди являются компонентами системы управления, а их основная обязанность состоит в выработке решений.

Открытые системы добиваются применения двух, часто конфликтующих, курсов действий. Действия по подержанию сбалансированности системы обеспечивают согласованность и взаимодействие с внешним окружением, что, в свою очередь, предотвращает очень быстрые изменения, которые могут разбалансировать систему. Напротив, действия по приспособляемости системы к различным изменениям позволяют адаптироваться к динамике внутреннего и внешнего спроса. Один курс действий, например, ориентирован на стабильность и сохранения достигнутого положения путем покупки, подержания, проверки и ремонта оборудования, набора и обучения работников, использования правил и процедур. Другой курс сосредотачивается на изменениях посредством планирования, изучения рынка, развития производства новой продукции и т.п. И то, и другое необходимо в интересах выживания организации. Стабильные и хорошо оснащенные организации, но не приспособленные к изменению условий, долго просуществовать не смогут. С другой стороны, приспособляемые, но не стабильные организации будут не эффективными и также маловероятно, что они смогут долго существовать.

Тенденции организационных изменений

Можно проследить три фазы фундаментальных изменений в организациях, произошедших в XX столетии и имеющих подлинно историческое значение. Первая фаза – отделение управленческих функций от собственников и превращение управления в профессию. Вторая фаза – появление, начиная с двадцатых годов, командно-административных организаций с вертикальной соподчиненностью и высоким уровнем централизации решений. Третья фаза – переход к организациям с преобладанием горизонтальных структур и связей, базирующихся на широком использовании информационных технологий, специальных знаний и системных методов принятия решений.

На пороге следующего столетия совершается кардинальный переход от организационной рационализации, основанной преимущественно на накопительном опыте, к всестороннему применению современных знаний, информационных сетей и компьютерного образования. Этот процесс сопровождается целым рядом капитальных преобразований. Активизируется интеграция в управлении путем образования ассоциативных структур, альянсов разных типов, включая организации транснационального характера. Набирают силу процессы комплексной реструктуризации, перехода к организациям с внутренними рынками, сокращения размеров организационных звеньев, использования целевых групп, матричных структур и самообучающихся организаций.

Все это призвано обеспечить ликвидацию противоречий и антагонизмов в функционировании современных организаций, сдерживающих эффективное использование производственного и интеллектуального потенциала. В перспективе необходимо преодолеть все еще имеющееся противостояние жестких корпоративных требований и устремлений работников, современных технологических систем и социальной системы, интегрированных производственных процессов и ожиданий рабочих, рутиной работы и удовлетворения от нее. Отлаженные системы интерфейсов не должны противоречить гуманитарным нуждам, сложные структуры – чувству индивидуальности, факторы расходов и доходов – необходимости развития личности. Важно добиться гармонии и соответствия между стабильностью и инновациями, единообразием и изменениями, устойчивостью организационной системы и творческим подходом, ростом организации и уменьшением ее размеров, стремлением к прибыли и запросами общества.

Наряду с традиционными экономическим критериями оценки деятельности организаций, основанными на измерении эффективности использования ресурсов по отношению к результатам, на передний план все больше выходят «неосязаемые» измерители: интеллектуальный капитал, удовлетворенность потребителя, социальная прибыль, организационная культура. Такие критерии ориентированы на перспективу. Во многих случаях они лучше свидетельствуют о будущих результатах, чем финансовые показатели.


Похожая информация.


ТЕХНОЛОГИИ ОБРАБОТКИ ОТРАСЛЕВОЙ ИНФОРМАЦИИ

Повсеместное внедрение информационных технологий и систем, вычислительной и телекоммуникационной техники в сферы управления экономикой, научные исследования, производство, а также появление множества компаний - производителей компьютеров и разработчиков программного обеспечения в последней четверти прошлого века нередко приводило к ситуации, когда: программное обеспечение, без проблем работающее на одном компьютере, не работает на другом; системные блоки одного вычислительного устройства не стыкуются с аппаратной частью аналогичного; ИС компании не обрабатывает данные заказчика или клиента, подготовленные ими на собственном оборудовании; при загрузке страницы с помощью «чужого» браузера вместо текста и иллюстраций на экране возникает бессмысленный набор символов. Эта проблема, реально затронувшая многие сферы бизнеса, получила название проблемы совместимости вычислительных, информационных и телекоммуникационных устройств.

Развитие систем и средств вычислительной техники, телекоммуникационных систем и быстрое расширение сфер их применения привели к необходимости объединения конкретных вычислительных устройств и реализованных на их основе ИС в единые информационно-вычислительные системы и среды для формирования единого информационного пространства (Unified Information Area - UIA). Формирование такого пространства стало насущной необходимостью для решения многих важнейших экономических и социальных задач в ходе становления и развития информационного общества.

Такое пространство можно определить как совокупность баз данных, хранилищ знаний, систем управления ими, информационно-коммуникационных систем и сетей, методологий и технологий их разработки, ведения и использования на основе единых принципов и общих правил, обеспечивающих информационное взаимодействие для удовлетворения потребностей пользователей. Основными составляющими единого информационного пространства являются:

Информационные ресурсы, содержащие данные, сведения, информацию и знания, собранные, структурированные по некоторым правилам, подготовленные для доставки заинтересованному пользователю, защищенные и архивированные на соответствующих носителях;

Организационные структуры, обеспечивающие функционирование и развитие единого информационного пространства и управление информационными процессами - поиском, сбором, обработкой, хранением, защитой и передачей информации конечным пользователям;

Средства обеспечения информационного взаимодействия, в том числе программно-аппаратные, телекоммуникации и пользовательские интерфейсы;


Правовые, организационные и нормативные документы, обеспечивающие доступ к ИР и их использование на основе соответствующих ИКТ.

При формировании единого информационного пространства менеджеры, архитекторы и разработчики программно-аппаратных средств столкнулись с рядом организационных, технических и технологических проблем. Например, разнородность технических средств вычислительной техники с точки зрения организации вычислительного процесса, архитектуры, систем команд, разрядности процессоров и шины данных потребовала создания стандартных физических интерфейсов, реализующих взаимную совместимость компьютерных устройств. Однако при дальнейшем увеличении числа типов интегрируемых устройств (число таких модулей в современных распределенных вычислительных и информационных системах исчисляется сотнями) сложность организации физического взаимодействия между ними существенно возрастала, что приводило к проблемам в управлении такими системами.

Разнородность программируемых сред, реализуемых в конкретных вычислительных устройствах и системах, с точки зрения многообразия операционных систем, различия в разрядности и прочих особенностей привели к созданию программных интерфейсов. Разнородность физических и программных интерфейсов в системе «пользователь - компьютерное устройство - программное обеспечение» требовала постоянного согласования («стыковки») программно-аппаратного обеспечения при его разработке и частого переобучения персонала.

История концепции открытых систем начинается в конце 1960-х - начале 1970-х гг. с того момента, когда возникла насущная проблема переносимости (мобильности) программ и данных между компьютерами с различной архитектурой. Одним из первых шагов в этом направлении, оказавшим влияние на развитие вычислительной техники, явилось создание компьютеров серии IBM-360, обладающих единым набором команд и способных работать с одной и той же операционной системой. Корпорация «IВМ» предоставляла со скидкой лицензии на свою операционную систему пользователям, которые предпочли купить компьютеры той же архитектуры у других производителей.

Частичное решение проблемы мобильности для программ обеспечили ранние стандарты языков высокого уровня, например ФОРТРАН и КОБОЛ. Языки позволяли создавать переносимые программы, хотя часто ограничивали функциональные возможности. Позднее эти возможности были существенно увеличены при появлении новых стандартов (расширений) на эти языки. Мобильность обеспечивалась также за счет того, что эти стандарты были приняты многими разработчиками различных программных платформ. Когда языки программирования приобрели статус стандарта «де-факто», их разработкой и сопровождением начали заниматься национальные и международные организации по стандартизации. В результате языки развивались уже независимо от своих создателей. Достижение мобильности и переносимости уже на этом уровне было первым примером истинных возможностей создаваемых систем, которые содержали в себе основные признаки того, что впоследствии было названо «открытостью системы».

Следующий этап в развитии концепции открытости - вторая половина 1970-х гг. Он связан с областью интерактивной обработки данных и увеличением объема информационных и программных продуктов, для которых требуется переносимость (пакеты для инженерной графики, системы автоматизации проектирования, базы данных и управление распределенными базами данных). Компания «Digital» начала выпуск мини-ЭВМ VAX, работающих под управлением операционной системы VMS. Машины этой серии имели уже 32-разрядную архитектуру, что обеспечило значительную эффективность программного кода и сократило издержки на работу с виртуальной памятью. Программисты получили возможность напрямую использовать адресное пространство объемом до 4 Гб, что практически снимало все ограничения на размеры решаемых в то время задач. Мини-ЭВМ VAX этого типа надолго стали стандартной платформой для систем проектирования, сбора и обработки данных, управления экспериментом и т. п. Именно они стимулировали создание мощных систем автоматизированного проектирования, СУБД, машинной графики, которые широко используются до настоящего времени.

Конец 1970-х гг. характеризуется быстрым развитием сетевых технологий. Компания «Digital» интенсивно внедряла свою архитектуру DECnet. Сети, использующие протоколы Internet (TCP/ IP), первоначально реализованные Агентством по перспективным исследованиям Министерства обороны США (DARPA), стали широко применяться для объединения различных систем. Фирма «IВМ» разработала и применяла собственную сетевую архитектуру (System Network Architecture - SNA), которая впоследствии стала основой для предложенной ISO архитектуры OSI.

Существует достаточное число определений понятия «открытая система», сформулированных в различных организациях по стандартизации и отдельных крупных компаниях.

По мнению специалистов Национального института стандартов и технологий США (National Institute of Standards and Technologies - NIST), открытая система - это система, которая способна взаимодействовать с другой системой посредством реализации международных стандартных протоколов. Открытыми системами являются как конечные, так и промежуточные системы. Однако открытая система не обязательно может быть доступна другим открытым системам. Эта изоляция может быть обеспечена или путем физического отделения, или путем использования технических возможностей, основанных на защите информации в компьютерах и средствах коммуникаций.

Другие определения в той или иной мере повторяют основное содержание приведенных определений. Анализируя их, можно выделить некоторые базовые черты, присущие открытым системам:

Технические средства, на базе которых реализована информационная система, объединяются сетью или сетями различного уровня - от локальной до глобальной;

Реализация открытости осуществляется на основе профилей (Profiles) функциональных стандартов в области ИТ;

Информационные системы, обладающие свойством открытости, могут выполняться на любых программных и технических средствах, которые входят в единую среду открытых систем;

Открытые системы предполагают использование унифицированных интерфейсов в процессах взаимодействия в системах «компьютер - компьютер», «компьютер - сеть» и «человек - компьютер».

На современном этапе развития ИТ открытую систему определяют как программную или информационную систему, построенную на базе исчерпывающего и согласованного набора международных стандартов на ИТ и профилях функциональных стандартов, которые реализуют открытые спецификации на интерфейсы, службы и поддерживающие их форматы, чтобы обеспечить взаимодействие (интероперабельность) и мобильность программных приложений, данных и персонала (Комитет IEEE POSIX 1003.0 Института инженеров по электротехнике и электронике - IEEE).

В качестве примеров использования технологии открытых систем можно привести технологии Intel Plug&Play и USB, а также операционные системы UNIX и (частично) ее основного конкурента - Windows NT. Одна из причин рассматривать систему UNIX в качестве базовой операционной системы для использования в открытых системах состоит в том, что она практически целиком написана на языке высокого уровня, имеет модульное строение и относительно гибка.

В настоящее время многие новые продукты сразу разрабатываются в соответствии с требованиями открытых систем. Примером тому может служить широко используемый в настоящее время язык программирования Java компании «Sun Microsystems».

Для того чтобы программную или информационную систему можно было отнести к открытой системе, она должна обладать совокупностью следующих свойств:

Взаимодействие (интероперабельность) - способность к взаимодействию с другими прикладными системами на локальных и (или) удаленных платформах (технические средства, на которых реализована ИС, объединяются сетью или сетями различного уровня - от локальной до глобальной);

Стандартизуемость - программные и информационные системы проектируются и разрабатываются на основе согласованных международных стандартов и предложений, реализация открытости осуществляется на базе функциональных стандартов (профилей) в области ИТ;

Расширяемость (масштабируемость) - возможность перемещения прикладных программ и передачи данных в системах и средах, которые обладают различными характеристиками производительности и различными функциональными возможностями, возможность добавления новых функций ИС или изменения некоторых уже имеющихся при неизменных остальных функциональных частях ИС;

Мобильность (переносимость) - обеспечение возможности переноса прикладных программ и данных при модернизации или замене аппаратных платформ ИС и возможности работы с ними специалистов, пользующихся ИТ, без их специальной переподготовки при изменениях ИС;

Дружественность к пользователю - развитые унифицированные интерфейсы в процессах взаимодействия в системе «пользователь - компьютерное устройство - программное обеспечение», позволяющие работать пользователю, не имеющему специальной системной подготовки. Пользователь работает с деловой проблемой, а не с проблемами компьютера и программного обеспечения.

Эти свойства современных открытых систем, взятые по отдельности, были характерны и для предыдущих поколений ИС и средств вычислительной техники. Новый взгляд на открытые системы состоит в том, что указанные свойства рассматриваются и реализуются в совокупности - как взаимосвязанные и реализующиеся в комплексе. Только в такой совокупности возможности открытых систем позволяют решать сложные проблемы проектирования, разработки, внедрения, эксплуатации и развития современных ИС.

По мере развития концепции открытых систем сформировались некоторые общие причины, с необходимостью мотивирующие переход к интероперабельным (Interoperable) ИС и разработке соответствующих стандартов и технических средств.

Функционирование систем в условиях информационной и реализационной неоднородности. Информационная неоднородность ресурсов заключается в разнообразии их прикладных контекстов (понятий, словарей, семантических правил, отображаемых реальных объектов, видов данных, способов их сбора и обработки, интерфейсов пользователей и т. д.). Реализационная неоднородность проявляется в использовании разнообразных компьютерных платформ, средств управления базами данных, моделей данных и знаний, языков и средств программирования и тестирования, операционных систем и т. п.

Интеграция систем. Системы эволюционируют от простых, автономных подсистем к более сложным, интегрированным системам, основанным на требовании взаимодействия компонентов.

Реинжиниринг систем. Эволюция бизнес-процессов предприятия - непрерывный процесс, который является неотъемлемой составляющей деятельности организации. Создание ИС, ее развитие и реконструкция (реинжиниринг) в связи с перепроектированием процессов - непрерывный процесс уточнения требований, трансформации архитектуры и инфраструктуры системы. В связи с этим система изначально должна быть спроектирована так, чтобы ее ключевые составляющие могли быть реконструированы при сохранении целостности и работоспособности системы.

Трансформация унаследованных систем. Практически любая система после создания и внедрения противодействует изменениям и имеет тенденцию быстрого превращения в бремя организации. Унаследованные системы (Legacy Systems), построенные на «уходящих» технологиях, архитектурах, платформах, а также программное и информационное обеспечение, при проектировании которых не были предусмотрены нужные меры для их постепенного перерастания в новые системы, требуют перестройки (Legacy Transformation) в соответствии с новыми требованиями бизнес-процессов и технологий. В процессе трансформации необходимо, чтобы новые модули системы и оставшиеся компоненты унаследованных систем сохраняли способность к взаимодействию.

Продление жизненного цикла систем. В условиях исключительно быстрого технологического развития требуются специальные меры, обеспечивающие необходимую продолжительность жизненного цикла продукта, включающего в себя постоянное улучшение его потребительских свойств (сопровождение программной системы). При этом новые версии продукта обязательно должны поддерживать заявленные функциональности предыдущих версий.

Таким образом, основной принцип формирования открытых систем состоит в создании среды, включающей в себя программные и аппаратурные средства, системы, службы и протоколы связи, интерфейсы, форматы данных. Такая среда в основе имеет развивающиеся доступные и общепризнанные международные стандарты и обеспечивает значительную степень взаимодействия (Interoperability), переносимости (Portability) и масштабирования (Scalability) приложений и данных.

Международные структуры в области стандартизации информационных технологий

Информационные технологии являются чрезвычайно сложной, многоплановой и многоаспектной сферой деятельности, направленной на создание ИКТ всех уровней (от федеральных до корпоративных), национальной информационной инфраструктуры, информационного общества на основе разработки, интеграции и развития информационных, вычислительных и телекоммуникационных ресурсов. В решении этих проблем ключевым является вопрос стандартизации ИТ на базе внедрения методов и средств архитектурной и функциональной стандартизации, позволяющей с помощью общих стандартов и профилей идентифицировать группы базовых и рабочих стандартов, требования, наборы функций и параметры, необходимые для реализации конкретных ИТ/ИС в предметно-ориентированных областях деятельности.

Организационная структура, поддерживающая процесс стандартизации ИТ, включает в себя три основных группы организаций: международные организации по стандартизации, входящие в структуру ООН, промышленные профессиональные или административные организации, промышленные консорциумы.

Международными организациями по стандартизации, входящими в структуру ООН, являются:

ISO (International Organization for Standardization-Международная организация по стандартизации). Серии стандартов ISO;

IEC (International Electrotechnical Commission - Международная электротехническая комиссия). Серии стандартов ISO;

ITU-T (International Telecommunication UnionTelecommunications - Международный союз по телекоммуникации). До 1993 г. эта организация имела другое название - ССГГТ (International Telegraph and Telephone Consultative Committee - Международный консультативный комитет по телефонии и телеграфии, сокращенно МККТТ). Серии стандартов Х.200, Х.400, Х.500, Х.600.

К промышленным профессиональным или административным организациям относятся:

IEEE (Institute of Electrical and Electronic Engineers - Институт инженеров по электротехнике и электронике, международная организация - разработчик ряда важных международных стандартов в области ИТ). Стандарты LAN IEEE802, POSIX и др.;

IAB (Internet Activities Board - Совет управления деятельностью Internet). Стандарты на протоколы TCP/IP;

Regional WOS (Workshops on Open Systems - рабочие группы по открытым системам). OSE-profiles.

Промышленными консорциумами являются:

ЕСМА (European Computer Manufacturers Association - Европейская ассоциация производителей вычислительных машин), OSI, Office Document Architecture (ODE);

OMG (Object Management Group - группа управления объектами);

RM: Common Object Request Broker Architecture (CORBA);

X/Open (организована группой поставщиков компьютерной техники), X/Open Portability Guide (XPG4) Common Application Environment;

NMF (Network Management Forum - форум управления сетями);

OSF (Open Software Foundation - Фонд открытого программного обеспечения). Имеет следующие предложения: OSF/1 (соответствует стандарту POSIX и XPG4), MOTIF - графический пользовательский интерфейс, DCE (Distributed Computer Environment) - технология интеграции платформ: DEC, HP, SUN, MIT, Siemens, Microsoft, Transarc и т.д., DME (Distributed Management Environment) - технологии распределенного управления средой.

Международные организации и консорциумы - разработчики стандартов

Схема функциональной стандартизации ИТ

Стандарты ISO и IEC объединили свою деятельность в области стандартизации ИТ, создав единый орган JTC1 - Объединенный технический комитет № 1 (Joint Technical Committee 1), предназначенный для формирования всеобъемлющей системы базовых стандартов в области ИТ и их расширения для конкретных сфер деятельности.

Работа над стандартами ИТ в JTC1 тематически распределена по подкомитетам (Subcommittees - SC), связанным с разработкой стандартов ИТ, относящимся к окружению открытых систем OSE.

Ниже приведены названия некоторых таких комитетов и подкомитетов:

С2 - символьные наборы и кодирование информации;

SC6 - телекоммуникация и информационный обмен между системами;

SC7 - разработка программного обеспечения и системная документация;

SC18 - текстовые и офисные системы;

SC21 - открытая распределенная обработка (Open Distributed Processing - ODP), управление данными (Data Management - DM) и взаимосвязь открытых систем OSI;

SC22 - языки программирования, их окружения и интерфейсы системного программного обеспечения;

SC24 - компьютерная графика;

SC27 - общие методы безопасности для ИТ-приложений;

SGFS - специальная группа по функциональным стандартам.

В настоящее время в мире существует несколько авторитетных сообществ, занимающихся разработкой стандартов открытых систем. Однако наиболее важной деятельностью в этой области является деятельность IEEE в рабочих группах и комитетах Portable Operating System Interface (POSIX). Первая рабочая группа POSIX была образована в IEEE в 1985 г. на основе UNIX-ориентированного комитета по стандартизации (ныне UniForum). Отсюда первоначальная направленность работы POSIX на стандартизацию интерфейсов ОС UNIX. Однако постепенно тематика работы рабочих трупп POSIX расширилась настолько, что стало возможным говорить не только о стандартной ОС UNIX, а о POSIX-совместимых операционных средах, имея в виду любую операционную среду, интерфейсы которых соответствуют спецификациям POSIX.

Международные стандарты должны быть реализованы для каждого системного компонента сети, включая каждую операционную систему и прикладные пакеты. До тех пор, пока компоненты удовлетворяют таким стандартам, они соответствуют целям открытых систем.

Открытые и закрытые системы

Существуют два основных типа систем: закрытые и открытые.

Закрытая система (closed system) - система, изолированная от внешней среды, элементы которой взаимодействуют только друг с другом, не имея контактов с внешней средой.

Рис. 3.1.

Открытая система (open system) - система, которая взаимодействует с окружающей ее средой в каком-либо аспекте: информационном, энергетическом, вещественном и т.д.1

Все организации являются открытыми системами, их выживание зависит от внешнего мира. Организация обменивается с внешней средой через проницаемые границы энергией, информацией, материалами. Открытая система не является самообеспечивающейся, так как зависит от энергии, информации и материалов, поступающих извне. Кроме того, открытая система имеет способность приспосабливаться к изменениям во внешней среде и должна делать это для того, чтобы продолжить свое функционирование.

Организация как сложная система состоит из крупных составляющих частей, которые называются подсистемами. Подсистемы могут, в свою очередь, состоять из более мелких подсистем. Поскольку все они взаимозависимы, неправильное функционирование даже самой маленькой подсистемы может повлиять на систему в целом. Поэтому работа каждого сотрудника и каждого отдела в организации очень важна для успеха всей организации.

Модель организации как открытой системы. Концепция 7-S Т. Питерса и Р. Уотермана

Модель организации как открытой системы в упрощенном виде представлена на рис. 3.2. Входами модели являются получаемые организацией из окружающей среды информация, капитал, человеческие ресурсы и материалы. Организация в процессе преобразования обрабатывает эти входы, преобразуя их в продукцию или услуги - выходы организации, которые она передает в окружающую среду. В ходе процесса преобразования образуется добавочная стоимость входов в том случае, если управление в организации является эффективным. В результате появляются дополнительные выходы, такие как прибыль, увеличение доли рынка, увеличение объема продаж (в бизнесе), реализация социальной ответственности, удовлетворение работников, рост организации и т.п.

Рис. 3.2.

Одна из наиболее популярных в 1980-е гг. системных концепций менеджмента - это теория "7-S", авторами которой являются исследователи консультативной фирмы "МакКинси" Т. Питере и Р. Уотерман, написавшие известную книгу "В поисках эффективного управления".

Согласно данной теории эффективная организация формируется на базе семи взаимосвязанных составляющих, изменение каждой из которых требует соответствующего изменения остальных шести. По-английски название всех этих составляющих начинается на "s", поэтому концепция получила название "7-S".

Ключевыми составляющими являются:

  • - стратегия (strategy) - планы и направления действий, определяющие распределение ресурсов, фиксирующие обязательства по осуществлению определенных действий во времени для достижения поставленных целей;
  • - структура (structure) - внутренняя композиция организации, отражающая деление организации на подразделения, иерархическую субординацию этих подразделений и распределение власти между ними;
  • - системы (system) - процедуры и рутинные процессы, протекающие в организации;
  • - штат (staff) - ключевые группы персонала организации, их характеристики по возрасту, полу, образованию и т.п.;
  • - стиль (style) - стиль управления и организационная культура;
  • - квалификация (skills) - отличительные возможности ключевых людей в организации;
  • - разделенные ценности (shared values) - смысл и содержание основных направлений деятельности, которые организация доводит до своих членов.

В соответствии с данной концепцией только те организации могут эффективно функционировать и развиваться, в которых менеджеры могут содержать в гармоничном состоянии систему, состоящую из перечисленных семи составляющих.

Закон - отражение объективных и устойчивых связей, проявляющихся в природе, обществе, человеческом мышлении. Эти связи могут носить всеобщий и частный, количественный и качественный характер, относиться к законам функционирования и законам развития, динамическим и статическим законам.

Близким, но не аналогичным понятию "закон" является понятие "закономерность" , отражающее логику и последовательность в явлениях, которые относятся к определенному месту и времени. В основе закономерностей лежат количественные и качественные зависимости между ними. Зависимость есть отношение одного явления к другому как следствия к причине.

Таким образом, прослеживается явная взаимосвязь между зависимостью как причинно-следственным отношением одного явления к другому, закономерностью как объективно существующими устойчивыми связями между явлениями, их причинами и следствиями и законами, отражающими общие, устойчивые, повторяющиеся отношения между явлениями.

Все это непосредственно относится к законам организации и характеризует их как выявление устойчивых организационных связей целого.

Основным законом организации является закон синергии , который заключается в том, что сумма свойств организованного целого превышает "арифметическую" сумму свойств каждого из его элементов в отдельности . Закон синергии можно рассматривать в определенном смысле как проявление свойства эмерджентности применительно к организации как системе. Отдельные науки по -своему объясняют появление дополнительного эффекта. Менеджер видит усиление эффекта за счет разделения и кооперации труда. Психолог подчеркивает, что уже самый обыкновенный контакт вызывает соревнование, запускает волевые механизмы самоутверждения, что в конечном счете может приводить к повышению производительности труда. Физиолог указывает, что соединение двух сил позволяет преодолевать препятствия, каждую из них в отдельности превышающие. Основательность закона синергии определяется тем, что действие других законов организации в конечном счете направлено на достижение более высоких значений синергического эффекта.

Закон наименьших проявляется в том, что структурная устойчивость целого определяется его наименьшей частичной устойчивостью . Этот общеорганизационный закон относится к любым видам целостных образований в природе и обществе. Наглядным примером проявления закона наименьших является элементарная цепь, которая состоит из звеньев неодинаковой прочности и рвется там, где находится наиболее слабое в отношении ее прочности звено. При принятии управленческого решения логическая цепочка доказательств рушится, если хотя бы одно из ее звеньев не выдерживает ударов критики. Организация прекрасно работает, пока одно из ее звеньев (в отличие от других) не перестанет получать и перерабатывать информацию, необходимую для успешного бизнеса.

Так, закон наименьших относительных сопротивлений определяет, в частности, судьбу социальных систем, их сохранение, их частичное или полное разрушение из-за разнообразных и сложных воздействий.

Закон самосохранения означает, что любая реальная организованная система стремится сохранить себя как целостное образование . Важнейшим условием сохранения системы является обеспечение ее равновесного функционирования. Равновесное состояние организации предполагает непрерывное поддержание энтропии системы на низком уровне, постоянное противодействие разрушающим порядок факторам.

С функционированием, ростом и развитием организации связана проблема статического и динамического равновесия. Организация находится в статическом равновесии, если ее структура со временем не меняется. Она проводит соответствующие мероприятия для того, чтобы приспособиться к окружающей среде. Такой вид равновесия получил название гомеостатического . При динамическом равновесии структура организации меняется, появляются новые подразделения , а иногда и новый бизнес. Организация не только приспособилась к требованиям среды, но и дала среде новую информацию, новый импульс для развития. В данном случае равновесие становится морфогенетическим . С законом самосохранения связано такое свойство систем, как устойчивость (см. главу 2).

Различают три типа устойчивости организации:

  1. внешний;
  2. внутренний;
  3. унаследованный.

Первый достигается внешним управлением, т. е. государственным воздействием на факторы внешней среды - рыночные, географические и др. В условиях плановой системы хозяйствования устойчивость производственно-экономических структур достигалась в основном внешними факторами, т. е. любые дестабилизационные процессы гасились извне. Механизмы приведения системы в стабильное состояние могли быть самыми различными: дополнительная экономическая поддержка , корректировка планов и др. Следовательно, проблема устойчивости организации существовала, просто она перемещалась на более высокий уровень (отраслевой, региональный, государственный). Устойчивость организации обеспечивалась гашением любых несанкционированных отклонений в системе включением механизмов государственного управления экономикой.

В нынешних условиях помимо внешних требуются внутренние механизмы обеспечения устойчивости функционирования организации. Речь идет о функционировании самоорганизующихся систем, когда управление организацией происходит на основе анализа собственных действий в окружающей среде. Внутренняя устойчивость организации определяется ее своевременным и рациональным реагированием на изменение внешней среды. Теоретические аспекты понятия внутреннего устойчивого равновесия организации на практике обычно проявляются в оценке финансовой устойчивости, определяемой в первую очередь сбалансированностью денежных потоков.

Кроме того, устойчивость организации достигается за счет "унаследованного управления", т. е. формирования, сохранения и развития внутренней прочности, внутреннего потенциала.

Действительная же, практическая устойчивость системы зависит не только от количества сконцентрированных в ней активностей, но и от способа их сочетания , характера их организационной связи. Поэтому говорят о структурной устойчивости, которая всегда может быть выражена количественно. Так, сравнивая две разные социально-экономические системы, можно обнаружить, что одна из них по своему строению является более приспособленной к окружающей среде, чем другая, т. е. структурно более устойчива. Например, экономический кризис, разрушая множество наиболее слабых или наименее целесообразных организаций, для других оборачивается сокращением объема работ . В результате с завершением кризиса экономические системы могут оказаться "оздоровленными". При этом очевидны и негативные моменты кризиса: рост безработицы, крах предприятий и т. п. Поэтому говорят об относительном характере динамической устойчивости.

Суммарная устойчивость системы - сложный результат частных устойчивостей разных ее частей по отношению к направленным. При этом, как известно, устойчивость зависит от наименьших относительных сопротивлений всех частей во всякий момент. Это показывает взаимосвязь законов организации.

Закон информированности - упорядоченности определяет, что в организованном целом не может быть больше порядка, чем информации .

Как было сказано, обоснование фундаментальной роли информации в окружающем нас мире явилось принципиальным выводом кибернетики. Информация стала унифицирующим понятием, определяющим действия организованных систем. Сегодня для принятия правильного рационального решения по упорядочиванию организационных связей необходимо много разнообразной информации, что дает выбор системе. Следовательно, информированность - залог порядка. Для оценки разнообразия объекта служит понятие энтропии. Применительно к теории информации энтропия означает меру разнообразия, меру неопределенности. Информация противодействует тенденции системы к дезорганизации и увеличению энтропии, тем самым способствуя переводу системы в более организованное состояние.

Таким образом, внутренняя организованность целого предопределена возможностями по преодолению информационной неопределенности в системе.

Закон пропорциональности - композиции отражает необходимость определенного соотношения между частями целого, их соразмерности и соответствия. Эффективное функционирование требует согласования целей, которые должны быть направлены на достижение некой общей цели.

Закон пропорциональности действовал и в глубокой древности, например при строительстве пирамид. Современные ученые подтверждают уникальность этих сооружений с точки зрения их пропорций по отношению к Солнцу, Луне, хотя многих приборов в те времена не существовало. В зодчестве правильные формы обеспечивают гармонию, красоту и равновесие форм, в экономике невозможно обойтись без балансов, методов оптимизации и т. д. В теории организации закон пропорциональности - композиции важен прежде всего с точки зрения упорядочивания личных целей субъектов организационного процесса с целями собственно организации. Он подчеркивает, что для сохранения целостности организации, ее выживания в среде при воздействии внутренних деструктивных процессов каждый член организации должен идентифицировать себя с организацией и влиять на ее устойчивость . Именно человек способен привносить изменения в организацию. Характерный для открытых систем закон Л. Берталанфи гласит, что для открытых систем всегда существует не один, а несколько способов достижения одного и того же результата, одного и того же состояния, подчеркнем, пропорционального, увязывающего все шаги в определенную композицию.